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Abstract 

Background:  Mesenchymal stem cell (MSC) therapy gained interest among scientists following the discovery of 
its therapeutic potential. However, their clinical use has been hindered due to their immunogenicity and tumori-
genicity. Relatively recently, it has been unveiled that the mechanism by which MSC promote healing is by secreting 
exosomes. This raised the interest in developing cell-free therapy, avoiding the obstacles that deterred the translation 
of MSC therapy into clinical practice.

Review:  This comprehensive narrative review summarises the current understanding of exosome biogenesis and 
content. Moreover, the existing research on exosome use in bone tissue engineering is discussed.

Conclusions:  Exosome-based therapy may provide excellent potential in the field of bone tissue engineering and 
craniofacial reconstructive surgery. Further investigation is required before the technology can be translated into clini-
cal practice.
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Background
Bone grafts used in craniofacial surgery provide the 
osseoconduction, which is the frame over which bone-
generating cells will adhere to promote bone formation 
and healing and stimulate the cells to differentiate into 
osteoblasts and form bones, which is referred to as osse-
oinduction. Grafts can be allogeneic, meaning that they 
can be collected from other patients, but this can elicit 
an immune reaction or cause transmission of disease [1]. 
To eliminate the immunogenicity of an allograft, they are 
frozen, freeze-dried or irradiated to promote their steril-
ity, which can also decrease their osseoconductivity and 
osseoinductivity [2]. Alternatively, a graft can be autolo-
gous, collected from the same patient from a donor site, 
such as the patient’s rib, femur or iliac crest. This elimi-
nates the complication associated with allogeneic graft 
use. However, it has the disadvantage of adding a second 

site of surgery, which increases patient morbidity and 
the possibility of infection, haemorrhage or nerve dam-
age. It also has the disadvantage of harvesting only a lim-
ited amount of the bone that might not be suitable when 
a more significant amount of the bone is needed. Thus, 
finding alternatives to bone grafting has gained research 
interest in the last three decades, which has led to the 
development of bone tissue engineering research focused 
on finding alternatives to bone grafting and enhances 
bone regeneration via a combination of biomaterials, 
cells and growth factors [3].

Since the development of stem cell biology and the 
discovery that they are unspecialised cells with the 
multipotential to differentiate into many different 
cell types, it became evident that they are the best 
choice of cells to enhance tissue regeneration, includ-
ing the bone [4]. Mesenchymal stem cells (MSC) are 
easier to harvest as they are found in many sites in the 
body. Their use also negates the ethical hurdle when 
using embryonic stem cells, which necessitate kill-
ing an embryo in order to obtain the cells [5]. They 
proved efficacy in treating a non-union fracture. In 
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2017, Emadedin et al. reported the safety and efficacy 
of injecting one-time implantation of 20–50 × 106 
MSCs into non-union sites and followed patients up 
for a year with radiographs [6]. Similarly, Castillo-
Cardiel et  al. reported that treating mandibular frac-
ture using adipose-derived MSC resulted in a higher 
ossification rate than the control group who received 
only reduction and fixation [7]. Moreover, stem cells 
combined with bone graft proved efficient in treating 
and repairing bone gaps caused by defects. Khojasteh 
et al. reported that using buccal fat pad-derived MSC 
and lateral ramus cortical plate to repair alveolar clefts 
exhibited higher bone formation after 6  months from 
the operation [8].

Despite the reported success associated with cell-
based therapy in repairing bone, it has still faced sev-
eral limitations from immunogenicity, tumorigenicity 
and low survival rate that have hindered its progress 
[9]. However, recent studies have suggested that MSC 
do not regenerate by engraftment into tissue. Instead, 
they secrete various cytokines, growth and angiogenic 
factors that cause tissue regeneration, angiogenesis 
and immune modulation [10]. These secreted factors 
are contained within an extracellular vesicle (EV) or 
exosomes. This has provided the impetus for research 
in their use as a cell-free alternative to the MSC regen-
erative treatment approach.

An early investigation by Gnecchi et al. in 2005 found 
that injecting a myocardial infarction site with MSC 
enhanced cardiac repair and function, which occurred 
in less than 72  hours [11]. They postulated that this 
early recovery effect does not occur due to MSC dif-
ferentiation into cardiomyocytes but due to the early 
release of paracrine factors from the MSC. They proved 
their hypothesis by preparing conditioned media from 
the MSC (which contained the exosomes) and sub-
jected adult rat ventricular cardiomyocytes (ARVC) 
into hypoxic conditions to resemble infarction, and 
when cultured those cells in the conditioned media, 
they found an increase in the number of ARVC com-
pared to the control group. Further studies showed 
that exosomes function similar to the proposed MSC 
function by increasing proliferation of the target tissue, 
preventing apoptosis and aiding regeneration by allow-
ing immunomodulation and increasing vascularisation 
[12]. From that study, the cell-free approach gained 
more interest as it presents a similar advantage for tis-
sue regeneration. At the same time, it guarantees low 
immunogenicity since exosomes lack biological mark-
ers responsible for eliciting an immune response, along 
with the shielding effect provided by the membrane 
structure surrounding the exosome that prevents it 
from degradation [13].

Exosome biogenesis
Exosomes are membrane-bound intraluminal cell vesicles 
of 40–100 nm width that bound the plasma membrane to 
be excreted with its cargo content into the extracellular 
space by all cell types [14, 15]. The importance of these 
exosomes stems from the fact that it is a way of commu-
nication and crosslinking between cells or even distant 
tissues [16]. Moreover, as they contribute to cells and 
tissues in healthy conditions, they are also attributed to 
the development and progression of diseases [17]. Their 
effect is mediated by their cargo content, which is hetero-
geneous, loaded with active molecules including lipids, 
nucleic acid or proteins. This cargo is carried inside the 
exosome until reaching the recipient cell to induce a sig-
nalling molecule that changes its physiological process 
[18]. As they pass outside the cells, exosomes escape 
phagocytosis by phagocytic cells. Moreover, when inter-
nalised into the target cell, they circumvent lysosomes 
and their degradation effect [19]. Exosome biogenesis 
starts by internalising some extracellular fluid and mac-
romolecules by endocytosis, which entails inward bud-
ding of the plasma membrane [20]. The process enables 
the cells to identify and adapt to changes in their envi-
ronment. The endocytosis process produces the early 
endosome (EE). EE also receives cargo from the Trans-
face of the Golgi Network (TGN), a vital cell organelle 
involved in packaging proteins after their production 
in the exosomes. EE undergoes a maturation process in 
which it recycles its content by activation, silencing and 
degrading and eventually sorting the content or cargo to 
turn into a late endosome (LE) [21]. EE tagged with ubiq-
uitylated proteins in their cytosol attract the Endosomal 
Sorting Complex Required for Transport (ESCRT), sort-
ing machinery needed to mature the EE into LE. ESCRT 
complexes are a group of four proteins (ESCRT-0 to 
ESCRT-3) found in the cell cytosol, which gets attracted 
to the ubiquitin tag on the intracellular part of the mem-
brane proteins. They work in sequential order as activa-
tion of ESCRT-0 leads to activation of ESCRT-1 and so 
forth. ESCRT-0 and ESCRT-1 are involved in identifying 
the ubiquitin tag on the cargo. In contrast, ESCRT-2 and 
3 are involved in sorting the cargo and producing invagi-
nations to build walls between the sorted cargo and pro-
ducing intraluminal vesicles (ILV) within a multivesicular 
body (MVB) (Fig. 1) [22].

MVB formation is a crucial step in exosome biogenesis, 
which is considered a large vesicle containing multiple 
smaller vesicles within it. Following MVB formation, they 
fuse with lysosomes when their cargo is destined to be 
degraded. Otherwise, they connect to the plasma mem-
brane, where ILV is released into the extracellular fluid as 
exosomes [23]. MVB transportation into their final desti-
nation (lysosome or plasma membrane) depends on the 
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contraction of the molecular motor proteins (myosin and 
actin) responsible for cell motility, organelle movement 
and cell mitosis. Following their docking on the plasma 
membrane from the cytosol side, another protein called 
SNARE (soluble NSF-attachment protein surface) is 
responsible for fusing the plasma membrane to the MVB 
membrane and causing their secretion into the extracel-
lular environment [24].

Exosome content
Exosome contents differ according to the cells secreting 
them. They share specific proteins such as those vital for 
MVB biogenesis and release (e.g. Alix, TSG101, Clath-
rin). They also share the proteins responsible for trans-
port and fusion with the cell membrane (e.g. annexins 
and Rab), and cytoskeleton proteins needed for move-
ment (e.g. actin and tubulin), heat shock proteins, which 
are involved in stress response (HSP70 and HSP90), and 
tetraspanin proteins (CD9, CD81 and CD82), which 
affect the exosome membrane and help in budding and 
cell penetration [25–27]. Shared proteins are commonly 
used as markers to identify and characterise exosomes 
as ALIX, TSG101 and different tetraspanins [28]. Other 
proteins in exosomes are related to the cells from which 
they are excreted.

Alongside proteins, exosomes are rich with differ-
ent types of ribonucleic acids (RNA), including micro-
RNA (miRs), which is the most abundant type alongside 
a few percentages of other types of RNAs, such as the 

ribosomal RNA (rRNA), messenger RNA (mRNA), long 
non-coding RNA (lncRNA) and other non-coding RNAs 
[29, 30]. MiRs are made of 22 nucleotides on average, 
which are considered non-coding, meaning that they 
are not translated into proteins. Alternatively, they have 
a function regulating the gene expression or silencing 
[31]. MiR-214, miR-29a, miR-1, miR-126 and miR-320 
are among the discovered miRs that fill exosomes and 
function in health and disease regulating angiogenesis, 
oncogenesis and haematopoiesis. Wang et  al. in a com-
prehensive animal model study found that increasing the 
expression of miR-29 decreases fibrosis in kidney proxi-
mal tubular epithelial cells by regulating collagen expres-
sion [32]. In contrast, Kogure et  al. found that lncRNA 
TUC399 transferred between cells within exosomes was 
implicated in the growth and spread of hepatocellular 
cancer [33]. Thus, they considered that lncRNA-loaded 
exosomes are a signalling mechanism involved in tumour 
growth by influencing genetic expression on cells within 
the microenvironment. Similarly, in 2015, Conigliaro 
et al. reported that exosomes excreted from CD90 + cells 
are rich with lncRNA H19 that is found to influence angi-
ogenesis and release of vascular endothelial growth fac-
tor (VEGF), thus promoting tumour development [34]. 
Nowadays, miRNA is considered a target for cancer ther-
apy with many drugs, whether they are miRNA inhibitors 
or miRNA mimics is currently under investigation [35].

Besides RNAs, exosomes contain deoxyribonucleic 
acid (DNA), either derived from the genome or the 

Fig. 1  Exosome biogenesis starts with the endocytosis and early endosome (EE) formation. In addition to extracellular cargo that gets to the EE, it 
receives cargo and protein from the trans-face of the Golgi network (TGN). The cargo undergoes meticulous surveillance and multivesicular body 
(MVB) containing the intraluminal vesicles (ILV). The cargo that should be degraded is trafficked toward the lysosome while the exosomes are 
carried on SNARE proteins to help it dock on the cytoplasmic membrane to be excreted as exosomes
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mitochondria. DNA gets secreted passively after cell 
death or actively by live cells in health and disease by 
breaking in the nucleus during cell division or caused by 
a damage mechanism [36]. The resultant is a polynucleo-
some (a variant number of nucleosome) which is either 
in the form of a double-strand (ds), single-strand (ss), a 
mitochondrial fragment if originated from mitochondria 
(mt) or a circular DNA fragment secreted from the cell 
as a cell-free DNA (cfDNA). Fernando et al. analysed the 
plasma cfDNA concentration and showed that around 
93% of it is located in exosomes which render it stable 
protected from degradation or attack from the immune 
system [37, 38]. Exosomal DNA has many biological 
functions to the recipient cells, modulating them and 
regulating the immune system [36].

Once the exosome is shed to the extracellular envi-
ronment, it gets transported into its target cell. Differ-
ent labelling techniques have been used to examine the 
biodistribution of exosomes, including bioluminescence 
imaging, magnetic resonance imaging and others [39]. It 
was found that the exosome journey from the mother cell 
to its target cell depends on their cell source, their size 
as well as the surface proteins present, but, with a large 
number of exosomes being trapped in the liver, spleen, 
lungs, bone and lymph nodes [40]. Understanding the 
factors affecting exosome trafficking allows exploiting 
their therapeutic potential and increases safety. Add-
ing moieties, protein surfaces or lipids are used either 
to enhance the natural targeting mechanism of exo-
some biodistribution or as bioengineered targets that 
will manipulate and help exosomes identify specific tar-
get cells [40]. Upon reaching its target cell, exosomes 
fuse to the plasma membranes of the target cell and get 
internalised via endocytosis to release their content into 
the cytosol [13]. Alternatively, they dock on a transmem-
brane ligand to induce downstream signal transduction 
that activates the cell [41].

Osteoblast exosomes
Several studies were conducted to analyse the exosome 
content secreted directly by osteoblasts. In 2007, Xiao 
et  al. published their proteomic analysis report. They 
identified many proteins within osteoblastic exosomes 
such as bone morphogenetic protein (BMP), alkaline 
phosphatase (ALP), eukaryotic initiation factor 2 (eIF2), 
osteopontin (OPN), osteocalcin (OCN) and osteonec-
tin (ON) secreted by osteoblasts to enhance mineralisa-
tion [42]. Huynh et  al. characterised receptor activator 
of nuclear factor kappa-B (RANKL) as a component of 
osteoclast exosome content essential for osteoclastogen-
esis [43]. Liu et  al. undertook an extensive review of 
the role of exosomes in bone remodelling, finding that 
exosomes deliver different miRNAs, such as miR-214-3p, 

miR-183-5p and miR-196a, as well as other growth fac-
tors (e.g. BMP and TGFβ1), that regulate bone formation 
[44].

Mesenchymal stem cell exosomes (MSC‑Exos)
In 2010, Lai et  al. were the first research group to iso-
late exosomes from the bone marrow-derived MSC and 
showed their ability to reduce myocardial infarction in 
mouse models [45]. Their work supported the hypoth-
esis that the MSC produces their regenerative effect by a 
paracrine effect through release of cytokines and growth 
factors to promote regeneration instead of only differ-
entiating into the cell lineage they are repairing. Follow-
ing their success, other studies demonstrated MSC-exos 
ability in promoting tissue regeneration. Zhang et  al. 
facilitated cutaneous wound healing [46], Bruno et  al. 
improved the recovery from acute kidney injury [47], Tan 
et  al. elicited a hepatoprotective effect against induced 
liver injury models [48], Zhang et  al. promoted axonal 
regeneration [49], Zhang et  al. alleviated TMJ osteoar-
thritis [50] and Zhang et  al. promoted bone regenera-
tion via combining exosomes into a tricalcium phosphate 
scaffold [51].

MSC therapy had proved to be efficient in many clini-
cal trials. However, many risks existed with MSC therapy, 
such as eliciting an immune response, potential tumo-
rigenicity and genetic instability [52]. Using the cell-free 
approach with exosomes derived from MSC is consid-
ered safer, avoiding the risks and allowing for the repeat 
administration of the therapy without the fear of MSC 
impaction in non-targeted tissues, especially the lungs 
[53]. Its production is also considered easier and more 
cost-effective than stem cell therapy, as with ultracen-
trifugation, a large scale of exosomes can be produced 
from a specific cell line [54]. Besides all these benefits, 
exosomes can be engineered to become carriers for drug 
delivery or small molecules, which has the advantage of 
decreasing the drug dosage and minimising the antici-
pated side effects [55]. To date, a number of studies have 
assessed the effect of MSC-derived exosomes on bone 
modelling and regeneration. Lu et al. found the exosomes 
derived from adipose tissue-MSC preconditioned with 
TNF-α promoted osteodifferentiation by inhibiting Wnt 
signalling [56]. Zhao et  al. also showed that cocultur-
ing MSC-exos with an osteoblast cell line increased the 
proliferation of the osteoblasts cells through mitogen-
activated protein kinase (MAPK) signalling, which is 
essential in the cell cycle and growth [57]. Another path-
way for suppressing bone healing was found by Xu et al. 
which is the micro-RNA (miR-128-3P) specifically car-
ried by aged MSC-exos. The group hypothesised that 
using an anti-(miR-128-3P) could be a target for bone 
healing, especially in the elderly [58]. These studies and 
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others, in aggregate, show that MSC-exos could be a 
potential therapeutic tool in treating bone, fractures and 
bone tissue engineering.

Bone tissue engineering (BTE) and exosomes
Bone tissue engineering is a growing field aiming to pro-
duce scaffolds from biocompatible, bioactive material 
that is seeded with MSC for their ability to differentiate 
down the osteogenic pathway and immunoregulation 
to promote healing and bone repair. However, with the 
rising trend toward non-cell therapy, exosomes can rep-
resent an alternative to MSC for bone regeneration. Li 
et al. fabricated scaffolds with polylactic co glycolic acid 
(PLGA) and combined them with exosomes derived from 
adipose tissue-derived MSC [59]. They showed that the 
exosomes’ presence in the scaffold greatly enhanced 
bone repair in animal models compared to the PLGA 
scaffold alone. In the same direction, Zhang et al. found 
that seeding a scaffold made from tricalcium phosphate 
(TCP) with exosomes derived from human-induced 
pluripotent stem cell-derived mesenchymal stem cell 
(hiPS-MSC-exos) are able to repair critical-size calva-
rial defects in rat models through the activation of the 
PI3K/Akt signalling pathway which is essential for cell 
proliferation, metabolism, survival, growth and angio-
genesis [51]. Xie et al. used decalcified bone extracellular 
matrix (dECM) for scaffold fabrication and compared the 
osteogenic potential of these bare scaffolds with scaffold 
coated the MSC-exos using micro-computed tomogra-
phy analysis and histological analysis [60]. They found 
that using exosomes greatly enhanced vascularisation of 
the scaffolds, thus promoting osteogenesis. In a unique 
recent study, Wu et  al. added neuromodulation cues to 
angiogenesis in its importance for bone regeneration. In 
their study, they used Schwann cell (SC) exosomes and 
cultured them with bone marrow stromal cells (BMSC) 
in  vitro and observed the enhancement of osteogenic 
differentiation of the BMSC [61]. They again used the 
combination to coat porous titanium (Ti) scaffolds and 
showed that SC-derived exosomes greatly enhanced the 
biological activity of the Ti scaffold. Diomede et al. used 
a 3D printing technology to fabricate scaffolds made 
from polylactic acid (PLA) polymer, seeded the gingival-
derived MSC-derived exosomes and implanted them in 
animal model calvarial defects [62]. The group further 
compared using the 3D-printed PLA scaffold seeded with 
regular exosomes with engineered exosomes using poly-
ethyleneimine (PEI) and found that the PEI-exos showed 
greater osteogenic inductivity and better healing in the 
animal models. Gandolfi et  al. took Diomede’s experi-
ment further. They produced PLA scaffolds and doped 
the surface with calcium silicate (CaSi) and dicalcium 
phosphate dihydrate (DCPD) and measured its effect 

on adipose-derived MSC [63]. They found that the dope 
layer enhanced bone repair as the calcium and silicon 
ions stimulated mineralisation.

Conclusions
There is a definitive need for investigating alternatives 
to the bone graft. Morbidity of autogenous bone grafts, 
the limited amount of the bone to be harvested and the 
need to have grafts that can enhance the aesthetic out-
come of the surgery have increased the research in bone 
tissue engineering. Since exosomes are extracted from 
MSC and carry the same therapeutic potential, the cell-
free approach has gained much interest. It provides 
intracellular communication needed for tissue regen-
eration through the regulation of cytokines, facilitating 
angiogenesis and osteoblast differentiation and miner-
alisation. Moreover, all its bioactive contents from pro-
teins, microRNAs and DNAs are enveloped within the 
lipid bilayer, are stable and are protected from degrada-
tion. They could be seeded in scaffolds for tissue regen-
eration instead of seeding scaffolds with cells. Although 
exosomes are considered a powerful treatment tool, 
the technology is still new. There should be a consensus 
on the method of purification and isolation as well as 
the effective concentration. Furthermore, and with the 
advances in biomaterials used for scaffold design, further 
investigations need to be carried out to identify the best 
combination without affecting the exosome potential. 
In summary, exosome-based therapy may provide excel-
lent potential in the field of bone tissue engineering and 
for craniofacial reconstructive surgery. However, further 
investigation is required before the technology can be 
translated into clinical practice.
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