The treatment of an orbital wall fracture does not require surgery when there is no or minimal displacement of the fracture, but surgical treatment is necessary if ocular or neurologic symptoms accompany the displacement. Known ophthalmic complications include blindness, ocular motility limitations, diplopia, decreased visual acuity, exophthalmos, and ocular depression. Neurological complications include headache, brain damage, and cerebrospinal fluid leakage [7].
In the present case, there were no ophthalmologically significant symptoms immediately after the injury, but the patient complained of diplopia after undergoing an open reduction and internal fixation of the depressed temporal bone. This suggests that the elevated intracranial pressure after brain surgery may have led to both the displacement of the fracture fragment into the orbit and the herniation of the brain parenchyma. Similarly, in a previous report, ventriculoperitoneal shunt surgery in patients with orbital wall defects was reported to cause enophthalmos [8]. It is thought that the orbital contents herniated into the intracranial space due to decreased intracranial pressure after surgery, and the symptoms improved after reconstructing the orbital wall. Therefore, it should be noted that even if there are no significant ocular symptoms and neurological symptoms, there is a possibility that orbital reconstruction may become necessary after neurosurgery.
When a fracture fragment is significantly displaced and associated with ophthalmologic and neurological symptoms, it is ideal to perform surgery as early as possible, ideally immediately after the injury occurs. Early reconstructive surgery can prevent additional or persistent orbital contents or brain damage, is less likely to result in infection by reconstructive materials, and is less likely to cause severe tissue adhesion, as observed in this case [9, 10]. Early reconstruction has also been reported to prevent the worsening of both ophthalmic and neurological complications [11, 12]. When the patient is generally in good condition following injury, it is advisable to perform orbital reconstruction at the same time as neurosurgery.
In addition to the timing of surgery, anatomic reconstruction is one of the important considerations in the management of orbital wall fractures. In this case, we reconstructed the superior orbital wall using a customized titanium mesh that was prepared using a skull model preoperatively. When reconstruction is performed without a customized titanium mesh, it may be difficult to do anatomic reconstruction during surgery. In addition, improperly positioned reconstruction material may pressurize structures passing through the optic nerve or superior orbital fissure and may require additional surgery. In order to solve this problem, a titanium mesh can be contoured preoperatively to be suitable for each individual patient using the patient’s skull model [13, 14]. However, a limitation of this approach is that operations that rely on the patient’s skull model to preoperatively contour the mesh for reconstruction cannot be performed immediately, because it takes time to prepare a skull model using CT and the titanium mesh.l