Singh VP, Moss TP (2015) Psychological impact of visible differences in patients with congenital craniofacial anomalies. Prog Orthod 16:5–5. https://doi.org/10.1186/s40510-015-0078-9
Article
PubMed
PubMed Central
Google Scholar
Elsalanty ME, Genecov DG (2009) Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2(3):125–134. https://doi.org/10.1055/s-0029-1215875
Article
PubMed
PubMed Central
Google Scholar
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461. https://doi.org/10.1007/s10856-014-5240-2
Article
PubMed
PubMed Central
Google Scholar
Oppenheimer AJ, Tong L, Buchman SR (2008) Craniofacial bone grafting: Wolff’s law revisited. Craniomaxillofac Trauma Reconstr 1(1):49–61. https://doi.org/10.1055/s-0028-1098963
Article
PubMed
PubMed Central
Google Scholar
Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2(Suppl 2):S96–S101. https://doi.org/10.1007/s005860100282
Article
Google Scholar
Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials (Basel) 12(17):2660. https://doi.org/10.3390/ma12172660
Article
Google Scholar
Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials 12:2660. https://doi.org/10.3390/ma12172660
Article
PubMed Central
Google Scholar
Mittal Y, Jindal G, Garg S (2016) Bone manipulation procedures in dental implants. Indian J Dent 7(2):86–94. https://doi.org/10.4103/0975-962X.184650
Article
PubMed
PubMed Central
Google Scholar
Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10
Article
PubMed
PubMed Central
Google Scholar
Kargozar S, Hashemian S, Soleimani M, Milan P, Askari M, Khalaj V, Samadikuchaksaraei A, Hamzehlou S, Katebi A, Latifi N, Mozafari M, Baino F (2017) Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Materials Science and Engineering: C 1:688–698. https://doi.org/10.1016/j.msec.2017.02.097
Article
Google Scholar
Awad HA, O’Keefe RJ, Lee CH, Mao JJ (2014) Chapter 83 - bone tissue engineering: clinical challenges and emergent advances in orthopedic and craniofacial surgery. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering (Fourth Edition). Academic Press, Boston, pp 1733-1743. doi:https://doi.org/10.1016/B978-0-12-398358-9.00083-5
O'Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Materials Today 14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
Article
Google Scholar
Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A (2018) Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 6(2):90–99
PubMed
PubMed Central
Google Scholar
Chocholata P, Kulda V, Babuska V (2019) Fabrication of Scaffolds for bone-tissue regeneration. Materials 12(4). https://doi.org/10.3390/ma12040568
Nyberg E, Rindone A, Dorafshar A, Grayson W (2016) Comparison of 3D-printed poly-ϵ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue engineering Part A 23. https://doi.org/10.1089/ten.TEA.2016.0418
Scheitz CJF, Peck LJ, Groban ES (2018) Biotechnology software in the digital age: are you winning? Journal of Industrial Microbiology & Biotechnology 45(7):529–534. https://doi.org/10.1007/s10295-018-2009-5
Article
Google Scholar
Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y (2009) A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dental materials journal 28:44–56. https://doi.org/10.4012/dmj.28.44
Article
PubMed
Google Scholar
Tamrakar A, Rathee M, Mallick R, Dabas S (2014) CAD/CAM in prosthodontics - a futuristic overview.
Lee K-H, Yeo I-S, Wu BM, Yang J-H, Han J-S, Kim S-H, Yi Y-J, Kwon T-K (2015) Effects of computer-aided manufacturing technology on precision of clinical metal-free restorations. Biomed Res Int 2015:619027–619027. https://doi.org/10.1155/2015/619027
Article
PubMed
PubMed Central
Google Scholar
Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.TEB.2012.0437
Article
PubMed
PubMed Central
Google Scholar
https://www.autodesk.co.uk/solutions/cad-cam.
Gul M, Arif A, Ghafoor R (2019) Role of three-dimensional printing in periodontal regeneration and repair: literature review. J Indian Soc Periodontol 23(6):504–510. https://doi.org/10.4103/jisp.jisp_46_19
Article
PubMed
PubMed Central
Google Scholar
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915–946. https://doi.org/10.1039/c7bm00765e
Article
PubMed
PubMed Central
Google Scholar
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008
Article
Google Scholar
Jain A, Bansal R (2015) Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci 7(3):188–194. https://doi.org/10.4103/0975-7406.160013
Article
PubMed
PubMed Central
Google Scholar
Mariani E, Lisignoli G, Borzì RM, Pulsatelli L (2019) Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci 20(3):636. https://doi.org/10.3390/ijms20030636
Article
PubMed Central
Google Scholar
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials 3(3):278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001
Article
Google Scholar
Maisani M, Pezzoli D, Chassande O, Mantovani D (2017) Cellularizing hydrogel-based scaffolds to repair bone tissue: how to create a physiologically relevant micro-environment? Journal of Tissue Engineering 8:2041731417712073. https://doi.org/10.1177/2041731417712073
Article
PubMed
PubMed Central
Google Scholar
Padovani GCFVP, Sauro S, Tay FR, Durán G, Paula AJ, Durán N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33:621–636
Article
Google Scholar
Polymeric scaffolds in tissue engineering application: a review (2011). International Journal of Polymer Science 2011. doi:https://doi.org/10.1155/2011/290602
Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Additive Manufacturing 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
Article
Google Scholar
Tiwari S, Patil R, Bahadur P (2018) Polysaccharide based scaffolds for soft tissue engineering applications. Polymers (Basel) 11(1):1. https://doi.org/10.3390/polym11010001
Article
Google Scholar
Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568. https://doi.org/10.3390/ma12040568
Article
PubMed Central
Google Scholar
Guduric V, Bareille R, Héroguez V, Latour S, L’Heureux N, Fricain JC, Catros S, Le Nihouannen D (2017) Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A:106. https://doi.org/10.1002/jbm.a.36289
Ginjupalli K, Shavi G, Averineni R, Bhat M, Udupa N, Upadhya N (2017) Poly(α-hydroxy acid) based polymers: a review on material and degradation aspects. Polymer Degradation and Stability 144. https://doi.org/10.1016/j.polymdegradstab.2017.08.024
Saad B, Suter UW (2001) Biodegradable polymeric materials. In: Buschow KHJ, Cahn RW, Flemings MC et al (eds) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford, pp 551–555. https://doi.org/10.1016/B0-08-043152-6/00105-4
Chapter
Google Scholar
Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics - a review. J Istanb Univ Fac Dent 51 (3 Suppl 1):S128-S137. doi:https://doi.org/10.17096/jiufd.63659
van Vugt TA, Geurts JAP, Arts JJ, Lindfors NC (2017) 3 - biomaterials in treatment of orthopedic infections. In: Geurts J (ed) Arts JJC. Woodhead Publishing, Management of Periprosthetic Joint Infections (PJIs), pp 41–68. https://doi.org/10.1016/B978-0-08-100205-6.00003-3
Google Scholar
Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF (2018) Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials (Basel) 11(12):2530. https://doi.org/10.3390/ma11122530
Article
Google Scholar
Ishikawa K, Matsuya S, Miyamoto Y, Kawate K (2003) 9.05 - bioceramics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive Structural Integrity. Pergamon, Oxford, pp 169–214. https://doi.org/10.1016/B0-08-043749-4/09146-1
Chapter
Google Scholar
Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8. https://doi.org/10.1088/1758-5090/8/3/032002
Rajzer I (2014) Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. Journal of Materials Science 49(16):5799–5807. https://doi.org/10.1007/s10853-014-8311-3
Article
Google Scholar
Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52
Article
PubMed
Google Scholar
Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30(3):204–213. https://doi.org/10.1210/er.2008-0031
Article
PubMed
PubMed Central
Google Scholar
Shen C, Yang C, Xu S, Zhao H (2019) Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 9:17–17. https://doi.org/10.1186/s13578-019-0281-3
Article
PubMed
PubMed Central
Google Scholar
Dang M, Saunders L, Niu X, Fan Y, Ma PX (2018) Biomimetic delivery of signals for bone tissue engineering. Bone Research 6(1):25. https://doi.org/10.1038/s41413-018-0025-8
Article
PubMed
PubMed Central
Google Scholar
Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B et al (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Scientific reports 7(1):1778–1778. https://doi.org/10.1038/s41598-017-01914-x
Article
PubMed
PubMed Central
Google Scholar
Visscher DO, Farré-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, Wolff J (2016) Advances in bioprinting technologies for craniofacial reconstruction. Trends in Biotechnology 34(9):700–710. https://doi.org/10.1016/j.tibtech.2016.04.001
Article
Google Scholar
Cui X, Boland T, D'Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155. https://doi.org/10.2174/187221112800672949
Article
PubMed
PubMed Central
Google Scholar
Iwanaga S, Arai K, Nakamura M (2015) Chapter 4 - inkjet bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D Biofabrication and Translation. Academic Press, Boston, pp 61–79. https://doi.org/10.1016/B978-0-12-800972-7.00004-9
Chapter
Google Scholar
Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002
Article
PubMed
Google Scholar
Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive materials 3(2):144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008
Article
PubMed
PubMed Central
Google Scholar
Hansen CJ, Saksena R, Kolesky DB, Vericella JJ, Kranz SJ, Muldowney GP, Christensen KT, Lewis JA (2013) High-throughput printing via microvascular multinozzle arrays. Advanced Materials 25(1):96–102. https://doi.org/10.1002/adma.201203321
Article
PubMed
Google Scholar
Xu T, Baicu C, Aho M, Zile M, Boland T (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1(3):035001–035001. https://doi.org/10.1088/1758-5082/1/3/035001
Article
PubMed
PubMed Central
Google Scholar
Tse C, Whiteley R, Yu T, Stringer J, MacNeil S, Haycock JW, Smith PJ (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017. https://doi.org/10.1088/1758-5090/8/1/015017
Article
PubMed
Google Scholar
Liao W, Xu L, Wangrao K, Du Y, Xiong Q, Yao Y (2019) Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 7:e7271. https://doi.org/10.7717/peerj.7271
Article
PubMed
PubMed Central
Google Scholar
Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology Journal 9(10):1304–1311. https://doi.org/10.1002/biot.201400305
Article
PubMed
Google Scholar
Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034. https://doi.org/10.1016/j.biomaterials.2014.01.064
Article
PubMed
PubMed Central
Google Scholar
Saijo H, Igawa K, Kanno Y, Mori Y, Kondo K, Shimizu K et al (2009) Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. Journal of Artificial Organs 12(3):200–205. https://doi.org/10.1007/s10047-009-0462-7
Article
PubMed
Google Scholar
Shen C, Zhang Y, Li Q, Zhu M, Hou Y, Qu M, Xu Y, Chai G (2014) Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(3):300–303
PubMed
Google Scholar
Pati F, Jang J, Lee J-W, Cho d-w (2015) Extrusion bioprinting. In. pp 123-152. doi:https://doi.org/10.1016/B978-0-12-800972-7.00007-4
Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2(3):119–154. https://doi.org/10.3390/jfb2030119
Article
PubMed
PubMed Central
Google Scholar
Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules (Basel, Switzerland) 21 (6):685. https://doi.org/10.3390/molecules21060685
Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103. https://doi.org/10.1088/1758-5082/6/2/024103
Article
PubMed
Google Scholar
Goh BT, Teh LY, Tan DBP, Zhang Z, Teoh SH (2015) Novel 3D polycaprolactone scaffold for ridge preservation – a pilot randomised controlled clinical trial. Clinical Oral Implants Research 26(3):271–277. https://doi.org/10.1111/clr.12486
Article
PubMed
Google Scholar
Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M (2018) Bioprinting of tissue engineering scaffolds. Journal of tissue engineering 9:2041731418802090–2041731418802090. https://doi.org/10.1177/2041731418802090
Article
PubMed
PubMed Central
Google Scholar
Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507–515. https://doi.org/10.2217/nnm.10.14
Article
PubMed
Google Scholar
Catros S, Guillotin B, Bacáková M, Fricain jc, Guillemot F (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Applied Surface Science - APPL SURF SCI 257:5142-5147. doi:https://doi.org/10.1016/j.apsusc.2010.11.049
Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N et al (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17(1):79–87. https://doi.org/10.1089/ten.TEC.2010.0359
Article
PubMed
Google Scholar
Unger C, Gruene M, Koch L, Koch J, Chichkov BN (2011) Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Applied Physics A 103(2):271–277. https://doi.org/10.1007/s00339-010-6030-4
Article
Google Scholar
Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256. https://doi.org/10.1016/j.biomaterials.2010.05.055
Article
Google Scholar
Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one 8(3):e57741–e57741. https://doi.org/10.1371/journal.pone.0057741
Article
PubMed
PubMed Central
Google Scholar
Roskies MG, Fang D, Abdallah M-N, Charbonneau AM, Cohen N, Jordan JO et al (2017) Three-dimensionally printed polyetherketoneketone scaffolds with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. The Laryngoscope 127(11):E392–E398. https://doi.org/10.1002/lary.26781
Article
PubMed
Google Scholar
Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355–369. https://doi.org/10.1007/s10616-015-9895-4
Article
PubMed
Google Scholar
Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002
Article
Google Scholar
Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M et al (2018) Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplant 27(8):1269–1280. https://doi.org/10.1177/0963689718782452
Article
PubMed
PubMed Central
Google Scholar
Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016) Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Scientific Reports 6(1):22898. https://doi.org/10.1038/srep22898
Article
PubMed
PubMed Central
Google Scholar
Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S (2020) Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res 24:2–2. https://doi.org/10.1186/s40824-019-0180-z
Article
PubMed
PubMed Central
Google Scholar
Buj-Corral I, Bagheri A, Petit-Rojo O (2018) 3D printing of porous scaffolds with controlled porosity and pore size values. Materials (Basel) 11(9):1532. https://doi.org/10.3390/ma11091532
Article
Google Scholar
Graziano A, d’Aquino R, Angelis MGC-D, De Francesco F, Giordano A, Laino G et al (2008) Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering. Journal of Cellular Physiology 214(1):166–172. https://doi.org/10.1002/jcp.21175
Article
PubMed
Google Scholar
Ji S, Guvendiren M (2019) 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines (Basel) 11(1):31. https://doi.org/10.3390/mi11010031
Article
Google Scholar
Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, Almaguer-Flores A, Schwartz Z, Boyan BD (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials 51:69–79. https://doi.org/10.1016/j.biomaterials.2015.01.035
Article
PubMed
PubMed Central
Google Scholar
Chen X, Fan H, Deng X, Wu L, Yi T, Gu L et al (2018) Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials (Basel) 8(11):960. https://doi.org/10.3390/nano8110960
Article
Google Scholar
Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Materials Today 16(12):496–504. https://doi.org/10.1016/j.mattod.2013.11.017
Article
Google Scholar
Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 17(6):459–474. https://doi.org/10.1089/ten.TEB.2011.0251
Article
PubMed
PubMed Central
Google Scholar
https://clinicaltrials.gov/ct2/show/NCT03103295.
Olson JL, Atala A, Yoo JJ (2011) Tissue engineering: current strategies and future directions. Chonnam Med J 47(1):1–13. https://doi.org/10.4068/cmj.2011.47.1.1
Article
PubMed
PubMed Central
Google Scholar
Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y (2019) Applications of 3D printing on craniofacial bone repair: a systematic review. Journal of Dentistry 80:1–14. https://doi.org/10.1016/j.jdent.2018.11.004
Article
Google Scholar
Ventola CL (2014) Medical applications for 3D printing: current and projected uses. P T 39(10):704–711
PubMed
PubMed Central
Google Scholar
Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF (2019) Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Frontiers in Bioengineering and Biotechnology 7(184). https://doi.org/10.3389/fbioe.2019.00184