For the reconstruction of large maxillary defects, the parieto-temporal flap [10] or micro-vascularized free flap harvested from the scapula [6], fibula [11], or forearm [12] is used. The advantages of these flaps are the simultaneous reconstruction of soft and hard tissues and are applicable even in poor recipient beds. In addition, these flaps are too bulky to reconstruct the palatal area. Some flaps can reconstruct both soft and hard tissues [6, 11]. Donor site morbidity, long operation time, and expensive treatment fees are the disadvantages of these techniques [1]. Compared to these techniques, PBFP combined with titanium mesh is a simple and inexpensive technique. In this case presentation, large defect after removal of squamous cell carcinoma was successfully reconstructed using PBFP combined with titanium mesh.
PBFP has been widely used for the reconstruction of oral defects because it is simple, the graft has rich vascularity, and the technique has a high success rate [1, 2]. However, PBFP is a fragile soft tissue flap that is easily torn during flap harvesting. Therefore, PBFP cannot be applied to defects without supporting structures. Maxillary sinus wall is frequently removed during tumor resection. If the bony wall is removed, the PBFP-only flap cannot prevent fluid and air leakage.
In this case, a titanium mesh was used as the supporting structure for PBFP. The defect and mesh were covered by a PBFP flap. Even though the defect was large (50 mm × 36 mm × 28 mm), the reconstruction was successful. Almost all parts of the defect were perfectly epithelialized after surgery, except for the occurrence of a pinpoint fistula. The fistula was treated using a palatal rotation flap. Regardless of fistula size, palatal fistula is hardly closed by direct closure. Accordingly, residual palatal mucosa was transposed laterally. As shown in postoperative follow-up image (Fig. 7), most surgical defect was covered with transformed mucosa from buccal fat tissue.
In the case of maxillary anterior alveolar bone defect, custom-made titanium mesh combined with bone graft is a good option for reconstruction [4]. However, custom-made titanium mesh combined with bone grafts can be performed in cases with sufficient soft tissue coverage. Therefore, this technique was inappropriate in our case. This case presentation showed that complex maxillary defects without hard tissue on the base could be reconstructed with PBFP combined with titanium mesh. Maxillary defect due to cancer treatment has been treated by PBFB in previous publication [13]. In previous technique [13], PBFB was used with titanium mesh for the reconstruction of sinus mucosa. Oral mucosa was covered with regional mucosa flap [13]. Subsequent technique from the same team added bone graft to this technique, but PBFB was still used for sinus repair [14]. This technique cannot be used for large oral mucosal defect where it cannot be covered with regional mucosal flap. As titanium mesh has pore, stem cells in the adipose tissue may migrate to both oral and sinus area. In postoperative CT scan, the titanium surface of sinus area was also covered with regenerated soft tissue (Fig. 6).
As patient did not receive either radiation therapy or chemotherapy, the risk of mesh exposure was not clarified in this study. Radiation is a risk factor for the implant loss [15]. The radiation-induced failure is still high for the implant in vascularized bone flap [16]. In case of custom-made titanium mesh, titanium mesh exposure is observed after radiation therapy [17]. Compared to other types of flap, PBFB might not be more protective to radiation therapy or chemotherapy. Considering that there is no flap to protect implant from the radiation therapy or chemotherapy, perfectly, any reconstruction should be delayed until finishing radiation therapy. If there was any reason to reconstruct surgical defect before additional tumor therapy, PBFB combined titanium mesh could be a candidate method because of its simplicity and minimal donor site morbidity.