Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82(4):163–201. https://doi.org/10.1016/j.pneurobio.2007.06.005
Article
PubMed
Google Scholar
Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16(5):E1. https://doi.org/10.3171/foc.2004.16.5.2
Article
PubMed
Google Scholar
Alexander R (2001) Seventh nerve injury during temporomandibular joint surgery. J Oral Maxillofac Surg 59(6):715. https://doi.org/10.1053/joms.2001.24810
Article
PubMed
Google Scholar
Pogrel MA, Goldman KE (2004) Lingual flap retraction for third molar removal. J Oral Maxillofac Surg 62(9):1125–1130. https://doi.org/10.1016/j.joms.2004.04.013
Article
PubMed
Google Scholar
Tay AB, Lai JB, Lye KW, Wong WY, Nadkarni NV, Li W et al (2015) Inferior Alveolar Nerve Injury in Trauma-Induced Mandible Fractures. J Oral Maxillofac Surg 73(7):1328–1340. https://doi.org/10.1016/j.joms.2015.02.003
Article
PubMed
Google Scholar
McLeod NM, Bowe DC (2016) Nerve injury associated with orthognathic surgery. Part 2: inferior alveolar nerve. Br J Oral Maxillofac Surg 54(4):366–371. https://doi.org/10.1016/j.bjoms.2016.01.027
Article
PubMed
Google Scholar
Sim YC, Hwang JH, Ahn KM (2019) Overall and disease-specific survival outcomes following primary surgery for oral squamous cell carcinoma: analysis of consecutive 67 patients. J Korean Assoc Oral Maxillofac Surg 45(2):83–90. https://doi.org/10.5125/jkaoms.2019.45.2.83
Article
PubMed
PubMed Central
Google Scholar
Kim S, Lee DH, Ahn KM (2020) Microvascular reconstruction for maxillofacial defects: a retrospective analysis of outcomes and complications in 121 consecutive cases. Maxillofac Plast Reconstr Surg 42(1):29. https://doi.org/10.1186/s40902-020-00273-4
Article
PubMed
PubMed Central
Google Scholar
Byun SH, Ahn KM (2021) Functional and electron-microscopic changes after differential traction injury in the sciatic nerve of a rat. Maxillofac Plast Reconstr Surg 43(1):12. https://doi.org/10.1186/s40902-021-00297-4
Article
PubMed
PubMed Central
Google Scholar
Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5(1):293–347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731
Article
PubMed
Google Scholar
Pierucci A, de Duek EA, de Oliveira AL (2008) Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation. Tissue Eng Part A 14(5):595–606. https://doi.org/10.1089/tea.2007.0271
Article
PubMed
Google Scholar
Archibald SJ, Shefner J, Krarup C, Madison RD (1995) Monkey median nerve repaired by nerve graft or collagen nerve guide tube. J Neurosci 15(5 Pt 2):4109–4123. https://doi.org/10.1523/JNEUROSCI.15-05-04109.1995
Article
PubMed
PubMed Central
Google Scholar
Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 173(2):213–223. https://doi.org/10.1006/exnr.2001.7846
Article
PubMed
Google Scholar
Radtke C, Aizer AA, Agulian SK, Lankford KL, Vogt PM, Kocsis JD (2009) Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res 1254:10–17. https://doi.org/10.1016/j.brainres.2008.11.036
Article
PubMed
Google Scholar
Wang Y, Zhao Z, Ren Z, Zhao B, Zhang L, Chen J, Xu WJ, Lu S, Zhao Q, Peng J (2012) Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett 514(1):96–101. https://doi.org/10.1016/j.neulet.2012.02.066
Article
PubMed
Google Scholar
di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63(9):1544–1552. https://doi.org/10.1016/j.bjps.2009.09.012
Article
PubMed
Google Scholar
Ohta M, Suzuki Y, Chou H, Ishikawa N, Suzuki S, Tanihara M, Suzuki Y, Mizushima Y, Dezawa M, Ide C (2004) Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. J Biomed Mater Res A 71(4):661–668. https://doi.org/10.1002/jbm.a.30194
Article
PubMed
Google Scholar
Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194(( Pt 1)(Pt 1)):1–14
Article
Google Scholar
Petruska JC, Mendell LM (2004) The many functions of nerve growth factor: multiple actions on nociceptors. Neuroscience Letters 361(1):168–171. https://doi.org/10.1016/j.neulet.2003.12.012
Article
PubMed
Google Scholar
Mouzaki A, Dai Y, Weil R, Rungger D (1992) Cyclosporin A and FK506 prevent the derepression of the IL-2 gene in mitogen-induced primary T lymphocytes. Cytokine 4(2):151–160. https://doi.org/10.1016/1043-4666(92)90050-2
Article
PubMed
Google Scholar
Gold BG, Katoh K, Storm-Dickerson T (1995) The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci 15(11):7509–7516. https://doi.org/10.1523/JNEUROSCI.15-11-07509.1995
Article
PubMed
PubMed Central
Google Scholar
Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH (1994) Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc Natl Acad Sci U S A 91(8):3191–3195. https://doi.org/10.1073/pnas.91.8.3191
Article
PubMed
PubMed Central
Google Scholar
Gold BG, Storm-Dickerson T, Austin DR (1994) The immunosuppressant FK506 increases functional recovery and nerve regeneration following peripheral nerve injury. Restor Neurol Neurosci 6(4):287–296. https://doi.org/10.3233/RNN-1994-6404
Article
PubMed
Google Scholar
Wang MS, Zeleny-Pooley M, Gold BG (1997) Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther 282(2):1084–1093
PubMed
Google Scholar
Diaz LM, Steele MH, Guerra AB, Aubert FE, Sloop GD, Diaz HA, Metzinger RC, Blake DB, Delaune CL, Metzinger SE (2004) The role of topically administered FK506 (tacrolimus) at the time of facial nerve repair using entubulation neurorrhaphy in a rabbit model. Ann Plast Surg 52(4):407–413. https://doi.org/10.1097/01.sap.0000107780.37285.6d
Article
PubMed
Google Scholar
Yeh C, Bowers D, Hadlock TA (2007) Effect of FK506 on functional recovery after facial nerve injury in the rat. Arch Facial Plast Surg 9(5):333–339. https://doi.org/10.1001/archfaci.9.5.333
Article
PubMed
Google Scholar
Tajdaran K, Chan K, Shoichet MS, Gordon T, Borschel GH (2019) Local delivery of FK506 to injured peripheral nerve enhances axon regeneration after surgical nerve repair in rats. Acta Biomater 96:211–221. https://doi.org/10.1016/j.actbio.2019.05.058
Article
PubMed
Google Scholar
Caicco MJ, Cooke MJ, Wang Y, Tuladhar A, Morshead CM, Shoichet MS (2013) A hydrogel composite system for sustained epi-cortical delivery of Cyclosporin A to the brain for treatment of stroke. J Control Release 166(3):197–202. https://doi.org/10.1016/j.jconrel.2013.01.002
Article
PubMed
Google Scholar
Bain JR, Mackinnon SE, Hunter DA (1989) Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plastic Reconstr Surg 83(1):129–138. https://doi.org/10.1097/00006534-198901000-00024
Article
Google Scholar
Jou IM, Lai KA, Shen CL, Yamano Y (2000) Changes in conduction, blood flow, histology, and neurological status following acute nerve-stretch injury induced by femoral lengthening. J Orthop Res 18(1):149–155. https://doi.org/10.1002/jor.1100180121
Article
PubMed
Google Scholar
Rickett T, Connell S, Bastijanic J, Hegde S, Shi R (2011) Functional and mechanical evaluation of nerve stretch injury. J Med Syst 35(5):787–793. https://doi.org/10.1007/s10916-010-9468-1
Article
PubMed
Google Scholar
Spiegel DA, Seaber AV, Chen LE, Urbaniak JR (1993) Recovery following stretch injury to the sciatic nerve of the rat: an in vivo study. J Reconstr Microsurg 9(1):69–74. https://doi.org/10.1055/s-2007-1006641
Article
PubMed
Google Scholar
Fowler SS, Leonetti JP, Banich JC, Lee JM, Wurster R, Young MR (2001) Duration of neuronal stretch correlates with functional loss. Otolaryngol Head Neck Surg 124(6):641–644. https://doi.org/10.1177/019459980112400608
Article
PubMed
Google Scholar
Kanaya F, Firrell JC, Breidenbach WC (1996) Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration. Plastic Reconstr Surg 98(7):1264–1271. https://doi.org/10.1097/00006534-199612000-00023
Article
Google Scholar
de Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Experimental Neurology 77(3):634–643. https://doi.org/10.1016/0014-4886(82)90234-5
Article
PubMed
Google Scholar
Carlton J (1979). Quantitating integrated muscle function follwing reinnervation. Paper presented at the Surg Forum
Google Scholar
Varejão AS, Meek MF, Ferreira AJ, Patrício JA, Cabrita AM (2001) Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 108(1):1–9. https://doi.org/10.1016/S0165-0270(01)00378-8
Article
PubMed
Google Scholar
Seddon HJ (1943) Three types of nerve injury. Brain 66(4):237–288. https://doi.org/10.1093/brain/66.4.237
Article
Google Scholar
Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 74(4):491–516. https://doi.org/10.1093/brain/74.4.491
Article
PubMed
Google Scholar
Snyder AK, Fox IK, Nichols CM, Rickman SR, Hunter DA, Tung THH, Mackinnon SE (2006) Neuroregenerative Effects of Preinjury FK-506 Administration. Plastic Reconstr Surg 118(2):360–367. https://doi.org/10.1097/01.prs.0000227628.43867.5b
Article
Google Scholar
Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341(6244):758–760. https://doi.org/10.1038/341758a0
Article
PubMed
Google Scholar
Siekierka JJ, Wiederrecht G, Greulich H, Boulton D, Hung SH, Cryan J, Hodges PJ, Sigal NH (1990) The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans isomerase. J Biol Chem 265(34):21011–21015. https://doi.org/10.1016/S0021-9258(17)45319-1
Article
PubMed
Google Scholar
Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66(4):807–815. https://doi.org/10.1016/0092-8674(91)90124-H
Article
PubMed
Google Scholar
Steiner JP, Dawson TM, Fotuhi M, Glatt CE, Snowman AM, Cohen N, Snyder SH (1992) High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358(6387):584–587. https://doi.org/10.1038/358584a0
Article
PubMed
Google Scholar
Lyons W, Steiner J, Snyder S, Dawson T (1995) Neuronal regeneration enhances the expression of the immunophilin FKBP- 12. J Neurosci 15(4):2985–2994. https://doi.org/10.1523/JNEUROSCI.15-04-02985.1995
Article
PubMed
PubMed Central
Google Scholar
Skene JH, Willard M (1981) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol 89(1):96–103. https://doi.org/10.1083/jcb.89.1.96
Article
PubMed
PubMed Central
Google Scholar
Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233(4765):783–786. https://doi.org/10.1126/science.3738509
Article
PubMed
Google Scholar
Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS (1999) Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther 289(3):1202–1210
PubMed
Google Scholar
Owens-Grillo JK, Hoffmann K, Hutchison KA, Yem AW, Deibel MR Jr, Handschumacher RE, Pratt WB (1995) The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J Biol Chem 270(35):20479–20484. https://doi.org/10.1074/jbc.270.35.20479
Article
PubMed
Google Scholar
Perrot-Applanat M, Cibert C, Géraud G, Renoir JM, Baulieu EE (1995) The 59 kDa FK506-binding protein, a 90 kDa heat shock protein binding immunophilin (FKBP59-HBI), is associated with the nucleus, the cytoskeleton and mitotic apparatus. J Cell Sci 108(Pt 5):2037–2051. https://doi.org/10.1242/jcs.108.5.2037
Article
PubMed
Google Scholar
Czar MJ, Owens-Grillo JK, Yem AW, Leach KL, Deibel MR Jr, Welsh MJ et al (1994) The hsp56 immunophilin component of untransformed steroid receptor complexes is localized both to microtubules in the cytoplasm and to the same nonrandom regions within the nucleus as the steroid receptor. Mol Endocrinol 8(12):1731–1741
PubMed
Google Scholar
Doolabh VB, Mackinnon SE (1999) FK506 accelerates functional recovery following nerve grafting in a rat model. Plastic Reconst Surg 103(7):1928–1936. https://doi.org/10.1097/00006534-199906000-00018
Article
Google Scholar
Jost SC, Doolabh VB, Mackinnon SE, Lee M, Hunter D (2000) Acceleration of peripheral nerve regeneration following FK506 administration. Restor Neurol Neurosci 17(1):39–44
PubMed
Google Scholar
Azizi S, Mohammadi R, Amini K, Fallah R (2012) Effects of topically administered FK506 on sciatic nerve regeneration and reinnervation after vein graft repair of short nerve gaps. Neurosurg Focus 32(5):E5. https://doi.org/10.3171/2012.1.FOCUS11320
Article
PubMed
Google Scholar
Mekaj AY, Manxhuka-Kerliu S, Morina AA, Duci SB, Shahini L, Mekaj YH (2017) Effects of hyaluronic acid and tacrolimus on the prevention of perineural scar formation and on nerve regeneration after sciatic nerve repair in a rabbit model. Eur J Trauma Emerg Surg 43(4):497–504. https://doi.org/10.1007/s00068-016-0683-4
Article
PubMed
Google Scholar
Davis B, Hilgart D, Erickson S, Labroo P, Burton J, Sant H, Shea J, Gale B, Agarwal J (2019) Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 60(5):613–620. https://doi.org/10.1002/mus.26656
Article
PubMed
Google Scholar
Davis B, Wojtalewicz S, Labroo P, Shea J, Sant H, Gale B, Agarwal J (2018) Controlled release of FK506 from micropatterned PLGA films: potential for application in peripheral nerve repair. Neural Regen Res 13(7):1247–1252. https://doi.org/10.4103/1673-5374.235063
Article
PubMed
PubMed Central
Google Scholar
Zubery Y, Goldlust A, Alves A, Nir E (2007) Ossification of a novel cross-linked porcine collagen barrier in guided bone regeneration in dogs. J Periodontol 78(1):112–121. https://doi.org/10.1902/jop.2007.060055
Article
PubMed
Google Scholar
Li S-T, Archibald SJ, Krarup C, Madison RD (1992) Peripheral nerve repair with collagen conduits. Clin Mat 9(3):195–200. https://doi.org/10.1016/0267-6605(92)90100-8
Article
Google Scholar
Weber RA, Warner MR, Verheyden CN, Proctor WH (1996) Functional evaluation of gap vs. abutment repair of peripheral nerves in the rat. J Reconstr Microsurg 12(3):159–163. https://doi.org/10.1055/s-2007-1006470
Article
PubMed
Google Scholar
Tuladhar A, Morshead CM, Shoichet MS (2015) Circumventing the blood-brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain. J Control Release 215:1–11. https://doi.org/10.1016/j.jconrel.2015.07.023
Article
PubMed
Google Scholar
Sameem M, Wood TJ, Bain JR (2011) A systematic review on the use of fibrin glue for peripheral nerve repair. Plastic Reconst Surg 127(6):2381–2390. https://doi.org/10.1097/PRS.0b013e3182131cf5
Article
Google Scholar
Felldin M, Bäckman L, Brattström C, Bentdal O, Nordal K, Claesson K, Persson NH (1997) Rescue therapy with tacrolimus (FK 506) in renal transplant recipients--a Scandinavian multicenter analysis. Transpl Int 10(1):13–18. https://doi.org/10.1111/j.1432-2277.1997.tb00530.x
Article
PubMed
Google Scholar