Ito H, Matsuo K (2016) Molecular epidemiology, and possible real-world applications in breast cancer. Breast Cancer 23:33–8
Article
PubMed
Google Scholar
Bundred N (2012) Antiresorptive therapies in oncology and their effects on cancer progression. Cancer Treat Rev 38:776–86
Article
PubMed
Google Scholar
Piccioli A (2015) Bisphosphonate-related osteonecrosis of the jaw in patients with breast cancer. Eur J Orthop Surg Traumatol 25:29–37
Article
PubMed
Google Scholar
Gnant M, Dubsky P, Hadji P (2012) Bisphosphonates: prevention of bone metastases in breast cancer. Recent Results Cancer Res 192:65–91
Article
PubMed
Google Scholar
Ahn KM (2014) Chapter 8. Bisphosphonate related osteonecrosis of the jaw in multiple myeloma. Multiple myeloma: risk factors, diagnosis and treatments. Nova Science publishers, Inc., New York
Google Scholar
Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62:527–34
Article
PubMed
Google Scholar
Gnant M, Mlineritsch B, Luschin-Ebengreuth G, Kainberger F, Kassmann H, Piswanger-Solkner JC et al (2008) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol 9:840–9
Article
PubMed
Google Scholar
Hillner BE, Ingle JN, Chlebowski RT, Gralow J, Yee GC, Janjan NA et al (2003) American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21:4042–57
Article
PubMed
Google Scholar
Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–6
Article
PubMed Central
PubMed
Google Scholar
Hughes DE, MacDonald BR, Russell RG, Gowen M (1989) Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 83:1930–5
Article
PubMed Central
PubMed
Google Scholar
Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD et al (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–87
Article
PubMed
Google Scholar
Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ (1993) Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91:2004–11
Article
PubMed Central
PubMed
Google Scholar
Shannon J, Shannon J, Modelevsky S, Grippo AA (2011) Bisphosphonates and osteonecrosis of the jaw. J Am Geriatr Soc 59:2350–5
Article
PubMed
Google Scholar
Body JJ (2003) Effectiveness and cost of bisphosphonate therapy in tumor bone disease. Cancer 97:859–65
Article
PubMed
Google Scholar
Berenson JR (2005) Recommendations for zoledronic acid treatment of patients with bone metastases. Oncologist 10:52–62
Article
PubMed
Google Scholar
Coleman RE (2000) Optimising treatment of bone metastases by Aredia(TM) and Zometa(TM). Breast Cancer 7:361–9
Article
PubMed
Google Scholar
Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–7
Article
PubMed
Google Scholar
Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B et al (2014) American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw--2014 update. J Oral Maxillofac Surg 72:1938–56
Article
PubMed
Google Scholar
Kourie HR, Antoun J, El Rassy E, Rassy M, Sader-Ghorra C, Kattan J (2015) Osteonecrosis of the jaw during biyearly treatment with zoledronic acid for aromatase inhibitor associated bone loss in early breast cancer: a literature review. J Bone Oncol 4:77–9
Article
PubMed Central
PubMed
Google Scholar
Matsuo A, Hamada H, Takahashi H, Okamoto A, Kaise H, Chikazu D (2015) Evaluation of dental implants as a risk factor for the development of bisphosphonate-related osteonecrosis of the jaw in breast cancer patients. Odontology. [Epub ahead of print]
Pilanci KN, Alco G, Ordu C, Sarsenov D, Celebi F, Erdogan Z et al (2015) Is administration of trastuzumab an independent risk factor for developing osteonecrosis of the jaw among metastatic breast cancer patients under zoledronic acid treatment? Medicine (Baltimore) 94:e671
Article
Google Scholar
Edge SB BD, Compton CC, Fritz AG, Greene FL, Trotti A (2010) American Joint Committee on Cancer, editors. AJCC cancer staging manual, 7th edn. Springer, New York, NY
Google Scholar
Nomura T, Shibahara T, Uchiyama T, Yamamoto N, Shibui T, Yakushiji T et al (2013) Bisphosphonate-related osteonecrosis of jaw (BRONJ) in Japanese population: a case series of 13 patients at our clinic. Bull Tokyo Dent Coll 54:117–25
Article
PubMed
Google Scholar
Hoff AO, Toth BB, Altundag K, Johnson MM, Warneke CL, Hu M et al (2008) Frequency and risk factors associated with osteonecrosis of the jaw in cancer patients treated with intravenous bisphosphonates. J Bone Miner Res 23:826–36
Article
PubMed
Google Scholar
Woo SB, Hellstein JW, Kalmar JR (2006) Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144:753–61
Article
PubMed
Google Scholar
Drake MT, Cremers SC (2010) Bisphosphonate therapeutics in bone disease: the hard and soft data on osteoclast inhibition. Mol Interv 10:141–52
Article
PubMed
Google Scholar
Holzinger D, Seemann R, Klug C, Ewers R, Millesi G, Baumann A et al (2013) Long-term success of surgery in bisphosphonate-related osteonecrosis of the jaws (BRONJs). Oral Oncol 49:66–70
Article
PubMed
Google Scholar
Eid A, Atlas J (2014) The role of bisphosphonates in medical oncology and their association with jaw bone necrosis. Oral Maxillofac Surg Clin North Am 26:231–7
Article
PubMed
Google Scholar
Jacobsen C, Zemann W, Obwegeser JA, Gratz KW, Metzler P (2014) The phosphorous necrosis of the jaws and what can we learn from the past: a comparison of “phossy” and “bisphossy” jaw. Oral Maxillofac Surg 18:31–7
Article
PubMed
Google Scholar
Rayman S, Almas K, Dincer E (2009) Bisphosphonate-related jaw necrosis: a team approach management and prevention. Int J Dent Hyg 7:90–5
Article
PubMed
Google Scholar
Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–20
Article
PubMed
Google Scholar
Jang HW, Kim JW, Cha IH (2015) Development of animal model for bisphosphonates-related osteonecrosis of the jaw (BRONJ). Maxillofac Plast Reconstr Surg 37:18
Article
PubMed Central
PubMed
Google Scholar
Tam Y, Kar K, Nowzari H, Cha HS, Ahn KM (2014) Osteonecrosis of the jaw after implant surgery in patients treated with bisphosphonates—a presentation of six consecutive cases. Clin Implant Dent Relat Res 16:751–61
Article
PubMed
Google Scholar
Graziani F, Vescovi P, Campisi G, Favia G, Gabriele M, Gaeta GM et al (2012) Resective surgical approach shows a high performance in the management of advanced cases of bisphosphonate-related osteonecrosis of the jaws: a retrospective survey of 347 cases. J Oral Maxillofac Surg 70:2501–7
Article
PubMed
Google Scholar
Jang-Ha Lee M-KK, Kim S-G, Park Y-W, Park S-W, Park Y-J (2013) Surgical management of bisphosphonate related osteonecrosis of the jaw using pedicled buccal fat pad flap. J Korean Assoc Maxillofac Plast Reconstr Surg 35:174–7
Google Scholar
Ho Kyung Lee MHS, Pang KM, Song SI, Lee JK (2013) Comparative study on surgical and conservative management of bisphosphonate-related osteonecrosis of the jaw (BRONJ) in disease stage 2. J Korean Assoc Maxillofac Plast Reconstr Surg 35:302–9
Google Scholar
Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–7
Article
PubMed
Google Scholar